Analysis of ice crystal growth for a crystal surface containing adsorbed antifreeze proteins

نویسندگان

  • Svein Grandum
  • Akira Yabe
  • Kazuya Nakagomi
  • Makoto Tanaka
  • Fumio Takemura
  • Yasunori Kobayashi
  • Per-Erling Frivik
چکیده

The adsorption of antifreeze protein (AFP) molecules to the ice crystal surface during melt growth from an AFP solution results in disturbance of the growth kinetics at the surface interface. In this paper, the growth pattern related to the potential for crystal growth as well as the crystal surface topography have been studied. The crystal shape and size were found to be strongly dependent on the supercooling in the crystal's surrounding liquid. In between a transition temperature and the freezing temperature, needle-type crystals were formed, growing rapidly in the c-axis direction. The surface was investigated using a scanning tunneling microscope (STM) and a systematic groove/ridge pattern aligned 653 ($53) to the hexagonal side on one bipyramidal plane observed with length and width similar to the size of the AFP molecule. The depth of the grooves, ranging from 2 to 10 nm indicates the curvature of ice. ( 1999 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superheating of ice crystals in antifreeze protein solutions.

It has been argued that for antifreeze proteins (AFPs) to stop ice crystal growth, they must irreversibly bind to the ice surface. Surface-adsorbed AFPs should also prevent ice from melting, but to date this has been demonstrated only in a qualitative manner. Here we present the first quantitative measurements of superheating of ice in AFP solutions. Superheated ice crystals were stable for hou...

متن کامل

New insights into ice growth and melting modifications by antifreeze proteins

Antifreeze proteins (AFPs) evolved in many organisms, allowing them to survive in cold climates by controlling ice crystal growth. The specific interactions of AFPs with ice determine their potential applications in agriculture, food preservation and medicine. AFPs control the shapes of ice crystals in a manner characteristic of the particular AFP type. Moderately active AFPs cause the formatio...

متن کامل

Bacterial Ice Crystal Controlling Proteins

Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although ...

متن کامل

A new model for simulating 3-d crystal growth and its application to the study of antifreeze proteins.

A novel computational technique for modeling crystal formation has been developed that combines three-dimensional (3-D) molecular representation and detailed energetics calculations of molecular mechanics techniques with the less-sophisticated probabilistic approach used by statistical techniques to study systems containing millions of molecules undergoing billions of interactions. Because our ...

متن کامل

Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism.

The crystal growth process by which fish antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) modify the ice morphology is analyzed in the AFP-ice system. A newly identified AFP-induced surface reconstruction mechanism enables one-dimensional helical and irregular globular ice binding surfaces to stabilize secondary, kinetically less stable ice surfaces with variable face indices. No...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999